Western Digital SCSI Hard Drives WD Enterprise

Technical Reference Manual

WDE2170

WDE4360

CCC: A9

Western Digital

© 1997 Western Digital Corporation All Rights Reserved

Information furnished by Western Digital Corporation is believed to be accurate and reliable. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at any time without notice.

Western Digital is a registered trademark. WD Enterprise and FIT Lab are trademarks of Western Digital Corporation. Other marks may be mentioned herein that belong to other companies.

Western Digital Corporation 8105 Irvine Center Drive Irvine, CA 92618

4079-001045 Rev. B 4/97

WD Enterprise WDE2170/WDE4360 (CCC: A9) Technical Reference Manual

TABLE OF CONTENTS

1.	DES	CRIPTION AND FEATURES
	1.1.	General Description
	1.2.	Advanced Features
	1.3.	Options
2.	Spe	CIFICATIONS
	2.1.	Performance Specifications
	2.2.	Physical Specifications 5 2.2.1. Physical Dimensions 6
	2.3.	Mechanical Specifications 7 2.3.1. Mounting 10
	2.4.	Electrical Specifications112.4.1.Current Requirements and Power Dissipation112.4.2.12V Current Profile122.4.3.Input Voltage Requirements132.4.4.Ripple132.4.5.Bring-Up Sequence13
	2.5.	Environmental Specifications142.5.1.Shock and Vibration142.5.2.Temperature and Humidity162.5.3.Cooling162.5.4.Atmospheric Pressure172.5.5.Acoustics17
	2.6.	Reliability Specifications
	2.7.	Agency Approvals202.7.1.Product Safety202.7.2.Electromagnetic Compatibility (EMC)20
3.	Adv	ANCED PRODUCT FEATURES
	3.1.	Compatibility Testing
	3.2.	SCSI-3 SPI Compliant
	3.3.	Embedded Servo Control
	3.4.	Read Caching and Pre-Fetch
	3.5.	Write Caching
	3.6.	512 Kilobyte Data Buffer
	3.7.	Adaptive Caching
	3.8.	Command Queuing and Reordering
	3.9.	Media Defect Management
	3.10.	Microcode Download
	3.11.	Reed Solomon ECC On-the-Fly
	3.12.	CRC Data Protection
	3.13.	Zoned Recording
	3.14.	Headerless Format

	3.15.	LED Support	
	3.16.	Option Block Functions	
	3.17.	Error Recovery Operations	
	3.18.	Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.)	
	3.19.	Hot Plug/Unplug Support	
4.	SCS	I INTERFACE AND COMMAND SET	
5.	Тне	OPTION BLOCK	
	5.1.	Physical Characteristics	
	5.2.	Pin Designation	
	5.3.	Option Block Pin Assignments	
	5.4.	SCSI ID Jumper Table	
6.	SCS		
	6.1.	Power Connectors and Cables	
	6.2.	SCSI Physical Interface	
	6.3.	50-Pin SCSI Connector	
	6.4.	68-Pin SCSI Connector	
	6.5.	80-Pin (SCA-2) SCSI Connector	
7.	INST	ALLATION AND MAINTENANCE	
	7.1.	Electrostatic Discharge (ESD) Protection	
	7.2.	Maintaining the Drive	
8.	TEC	HNICAL SUPPORT	
9.	GLO	SSARY	40
10	. App	ENDIX A. — UNDERSTANDING THE MODEL NUMBER	
11	. Inde	×	

LIST OF FIGURES

Figure 2-1.	50-pin Drive Dimensions	7
Figure 2-2.	68-pin Drive Dimensions	8
Figure 2-3.	80-pin Drive Dimensions	9
Figure 2-4.	Drive Axis Definition	10
Figure 2-5.	WDE2170 +12V Current Profile	12
Figure 2-6.	WDE4360 +12V Current Profile	12
Figure 2-7.	Drive Baseplate Thermocouple Location	18
Figure 2-8.	PCBA Thermocouple Locations	19
Figure 5-1.	Option Block and LED Pin Designation	28
Figure 6-1.	50-Pin SCSI Connector and Power Connector Pin Numbers	32
Figure 6-2.	68-Pin SCSI Conn., Remote Option Conn., and Power Conn. Pin Numbers	34
Figure 6-3.	80-Pin SCSI Connector Pin Numbers	36

LIST OF TABLES

Table 2-1.	WDE2170/4360 Performance Specifications	. 4
Table 2-2.	WDE2170/4360 Physical Specifications	. 5
Table 2-3.	WDE2170/4360 Physical Dimensions	. 6
Table 2-4.	50-pin Drive Dimensions	. 7
Table 2-5.	68-pin Drive Dimensions	. 8
Table 2-6.	80-pin Drive Dimensions	. 9
Table 2-7.	WDE2170 Current Requirements and Power Dissipation	11
Table 2-8.	WDE4360 Current Requirements and Power Dissipation	11
Table 2-9.	Voltage Ripple	13
Table 2-10.	Shock and Vibration	14
Table 2-11.	Temperature and Humidity	16
Table 2-12.	Maximum & Reliability Operating Temperature Limits	16
Table 2-13.	Allowable Altitude Ranges	17
Table 2-14.	Sound Power Level	17
Table 2-15.	WDE2170 and WDE4360 Reliability Parameters	20
Table 5-1.	Option Block Pin Assignments	29
Table 5-2.	SCSI ID Jumper Table	30
Table 6-1.	50-pin Drive Power Connector and Cable	31
Table 6-2.	68-pin Drive Power Connector and Cable	31
Table 6-3.	50-Pin SCSI Connector Pin Assignments	33
Table 6-4.	DC Power Connector	33
Table 6-5.	68-pin SCSI Connector Pin Assignments	35
Table 6-6.	Remote Option for 68-Pin Connector (single-ended and differential versions)	36
Table 6-7.	DC Power Connector (single-ended and differential versions)	36
Table 6-8.	80-Pin (SCA-2) SCSI Connector Pin Assignments	37

1. DESCRIPTION AND FEATURES

1.1. General Description

Designed to set a new direction in mass storage solutions, the WD Enterprise[™] lowprofile 3.5-inch hard drives are the first in a family of 7200 RPM products. The outstanding performance, capacity, and reliability of these mass storage solutions make them the most competitive price/performance choice for workstations, servers, and multi-user systems.

The WDE2170 and WDE4360 drives feature formatted capacities of 2.1 and 4.3 gigabytes with media data transfer rates up to 140 Mbits per second. These drives are SCSI-3 SPI compliant and support Ultra Fast and Ultra Fast Wide host transfer rates of up to 40 MB/s. Advanced read/write caching, command queuing, command reordering (seek and rotational), Self Monitoring and Reporting Technology (S.M.A.R.T.) and SCSI Configure Automatically (SCAM) are standard features on the Western Digital Enterprise hard drives.

Western Digital hard drives are designed and manufactured to the highest standards of quality and reliability. WD Enterprise drives incorporate the mechanical platform design and proven recording technologies of Western Digital's award-winning Caviar drives. This quality design means the WD Enterprise drives have fewer disks and heads which translates into many performance and reliability advantages. The WDE2170 and WDE4360 drives deliver the performance, capacity, and reliability demanded by all high performance enterprise systems.

1.2. Advanced Features

Product Features

- Formatted Capacities of 2.17 GB and 4.36 GB
- Low-profile 1-Inch (25.4 mm) in Height
- 7200 RPM Spindle Speed
- SCSI-3 SPI Compliant; Ultra Fast/Ultra Fast Wide with SCA-2 interface supported
- 512 kilobytes Programmable Multi-segmented Data Buffer (1 MB option)
- Zoned Recording
- Headerless Format
- SCAM Plug-N-Play Compliant
- Single-ended or Differential SCSI Drivers/Receivers (optional)
- Active Termination (available on 50- and 68-pin single-ended drives)
- Downloadable Firmware (both interface and servo code)
- Embedded Servo
- Balanced Spindle
- Dynamic Spindle Brake
- Vertical or Horizontal Mounting

Performance Features

- Media Data Transfer Rate up to 140 Mbits/s
- Average Read Seek Time of 8 ms
- 4.17 ms Rotational Latency
- Command Queuing
- Command Reordering (Seek and Rotational)
- Write/Read Coalescing
- Adaptive Caching Algorithm
- Self-Optimizing Buffer Ratios
- Adaptive Segmented Cache
- Auto-Read Reallocation/Auto-Write Reallocation (ARRE/AWRE)
- Adaptive Servo Functions

Reliability Features

- Self Monitoring and Reporting Technology (S.M.A.R.T.)
- Direct Hot-Plug Capability in SCA-2 Configuration
- Hardware ECC On-The-Fly Error Correction
- CRC Data Buffer Protection
- Sector Slipping Defect Management
- Self Diagnostics on Power Up
- 1,000,000 Hour MTBF Projected

These advanced product features are further defined in section 3. In certain cases we refer you to other documents for additional detail. To obtain a document, contact your local Western Digital sales office, authorized Western Digital reseller, or access the Western Digital web page at **www.wdc.com**

1.3. Options

Upon request, the following options are incorporated at the time of production.

Data Buffer of 1 Megabyte

The standard data buffer size is 512 kilobytes. You may order a 1 megabyte option. For more details, refer to the interface matrix table in Appendix A.

Single-unit Shipping Pack Kit

The drive is shipped in bulk packaging to provide maximum protection against damage during transit. Units shipped individually require additional protection as provided by the single-unit shipping pack. Contact your local Western Digital sales office for ordering information.

Differential SCSI

The WD Enterprise drive provides, as an option, differential SCSI drivers/receivers on the 68-pin interface configuration. For more details, refer to the interface matrix table in Appendix A.

Termination Power

50-pin and 68-pin drives have the ability to supply termination power to the SCSI bus. This option can be enabled by setting the corresponding jumper on the option block.

2. SPECIFICATIONS

2.1. Performance Specifications

Table 2-1. WDE2170/4360 Performance Specifications

PERFORMANCE CRITERIA	WDE2170/WDE4360 SPECIFICATIONS
Average Seek	
• Read • Write	8 ms 9.5 ms
Track-to-Track Seek	
• Read • Write	1 ms 2.5 ms
Full Stroke Seek	< 18 ms
Average Latency	4.17 ms
Rotational Speed	7200 RPM
Data Transfer Rate	
Media to Buffer	81-140 Mbits/s
Buffer to Host	40 MB/s max.
Buffer Size ¹	512 KB 1 MB optional
Error Rate - Unrecoverable	< 1 in 10^{14} bits read
Spindle Start Time	< 30s to ready
Spindle Stop Time	< 20s
Contact Start/Stop Cycles (CSS) ²	20,000

¹ User can access the entire 512 KB or 1 MB data buffer.

² Must not exceed defined environmental specification.

Note: This table represents typical values under nominal conditions.

Physical Specifications 2.2.

Physical Specifications	WDE2170	WDE4360
Formatted Capacity ¹	2170 MB	4360 MB
Interface(s)	Ultra Fast • (50-pin) Ultra Fast Wide • (68-pin) ² • (80-pin SCA-2)	Ultra Fast • (50-pin) Ultra Fast Wide • (68-pin) ² • (80-pin SCA-2)
Actuator Type	Rotary Voice Coil	Rotary Voice Coil
Media Type	Thin Film	Thin Film
Head Type	Thin Film Inductive	Thin Film Inductive
Servo Type	Embedded	Embedded
Number of Disks	2	4
Number of Data Surfaces	4	8
Number of Heads	4	8
Bytes per Sector ³	512	512
Tracks per Inch	6150	6150
Bits per Inch (000)	125 (ID)	125 (ID)
Areal Density	769 Mb/in ²	769 Mb/in ²
Total Cylinders	5956	5956
Zones per Surface	20	20
User Sectors per Drive (512 byte)	225 (OD), 133 (ID)	225 (OD), 133 (ID)
Recording Method	0,4,4 RLL ⁴	0,4,4 RLL
ECC⁵	144-bit Reed Solomon	144-bit Reed Solomon

Table 2-2. WDE2170/4360 Physical Specifications

Western Digital defines a megabyte (MB) as 1,000,000 bytes and a gigabyte (GB) as 1,000,000,000 bytes.

² Differential option available on 68-pin models.

³ The standard is 512 byte sectors. Optionally, we will support 512-528 bytes per sector in even byte increments. Capacity will change depending on sector size chosen.

⁴ Run Length Limited

1

⁵ ECC has 144-bit span in hardware for correction on-the-fly.

2.2.1. Physical Dimensions

Physical	U.S. Dimension Tolerance		Physical U		Met	ric
Characteristic			Dimension	Tolerance		
Height	1.00 inch	± 0.02 inch	25.4 mm	± 0.51 mm		
Length	5.75 inches	± 0.02 inch	146.05 mm	± 0.51 mm		
Width	4.00 inches	± 0.02 inch	101.6 mm	± 0.51 mm		
Weight WDE2170	1.1 pounds	± 0.11 lbs.	0.48 kg	± 0.05 kg		
Weight WDE4360	1.2 pounds	± 0.11 lbs.	0.53 kg	± 0.05 kg		

Table 2-3. WDE2170/4360 Physical Dimensions

2.3. Mechanical Specifications

Figure 2-1 through Figure 2-3 show the mounting dimensions and locations of the screw holes for the WDE2170 and WDE4360 drives.

Figure 2-1. 50-pin Drive Dimensions

Dimension Inches		Millimeters
A1	4.000 ± .020	101.60 ± 0.51
A2	3.750 ± .010	$95.25~\pm~0.25$
A3	2.375 ± .010	$60.32~\pm~0.25$
A4	1.750 ± .010	$44.45~\pm~0.25$
A5	5.750 ± .020	146.05 ± 0.51
A6	.625 ± .020	15.87 ± 0.51
A7	1.638 ± .010	41.60 ± 0.25
A8	1.787 ± .010	$45.39~\pm~0.25$
A9	$4.000 \pm .010$	101.60 ± 0.25
A10	.250 ± .010	$6.35~\pm~0.25$
A11	1.000 ± .020	25.40 ± 0.51
A12	.035 ± .020	0.89 ± 0.51
A13	.300 ± .020	7.62 ± 0.51

Table 2-4. 50-pin Drive Dimensions

Figure 2-2. 68-pin Drive Dimensions

Dimension	Inches	Millimeters
A1	4.000 ± .020	101.60 ± 0.51
A2	3.750 ± .010	95.25 ± 0.25
A3	$2.375~\pm~.010$	$60.32~\pm~0.25$
A4	1.750 ± .010	44.45 ± 0.25
A5	5.750 ± .020	146.05 ± 0.51
A6	.625 ± .020	15.87 ± 0.51
A7	1.638 ± .010	41.60 ± 0.25
A8	1.787 ± .010	45.39 ± 0.25
A9	4.000 ± .010	101.60 ± 0.25
A10	.250 ± .010	$6.35~\pm~0.25$
A11	1.000 ± .020	25.40 ± 0.51
A12	.067 ± .020	1.70 ± 0.51
A13	.410 ± .020	10.41 ± 0.51

Table 2-5. 68-pin Drive Dimensions

Figure 2-3. 80-pin Drive Dimensions

1 able 2 0.00 pin bive binensions	Table 2-6.	80-pin	Drive	Dime	nsions
-----------------------------------	------------	--------	-------	------	--------

Dimension	Inches	Millimeters
A1	4.000 ± .020	101.60 ± 0.51
A2	3.750 ± .010	$95.25~\pm~0.25$
A3	$2.375 \pm .010$	$60.32~\pm~0.25$
A4	1.750 ± .010	44.45 ± 0.25
A5	5.750 ± .020	146.05 ± 0.51
A6	.625 ± .020	15.87 ± 0.51
A7	1.638 ± .010	41.60 ± 0.25
A8	1.787 ± .010	45.39 ± 0.25
A9	4.000 ± .010	101.60 ± 0.25
A10	.250 ± .010	$6.35~\pm~0.25$
A11	1.000 ± .020	25.40 ± 0.51
A12	.069 ± .020	1.75 ± 0.51
A13	2.000 ± .020	50.80 ± 0.51

2.3.1. Mounting

The WD Enterprise drives feature side and bottom mounting holes, which allow the drive to be mounted in any orientation. See Figure 2-4 for orientation axes.

The hard drive is a precision mechanical assembly. Improper mounting may distort the drive frame and impair its ability to function. For instructions on installing the drive, including drive handling and mounting, refer to the *WD Enterprise Installation Guide* (document number 4079-001046).

Figure 2-4. Drive Axis Definition

2.4. Electrical Specifications

2.4.1. Current Requirements and Power Dissipation

Operating Mode	Cu Population I	urrent Mean + 4 Sigma	Cu Popula	urrent ition Mean	Power Pop Mean + 4 Sigma	Power Population Mean
	12 VDC	5 VDC SE/Diff. ⁴	12 VDC	5 VDC SE/Diff. ⁴	SE/Diff. ⁴	SE/Diff. ⁴
Spin-up	peak DC 1.22A	635/780 mA	peak DC 1.15A	580/760 mA		
Seek 50 ops/s ¹	mean DC 390 mA	645/795 mA	mean DC 345 mA	585/770 mA	7.65/8.70 W	7.05/8.14 W
Idle ²	255 mA	625/785 mA	210 mA	570/760 mA	5.96/6.85 W	5.35/6.29 W
Read/Write ³	365 mA	645/795 mA	325 mA	585/770 mA	7.65/8.70 W	7.05/8.14 W

Table 2-7. WDE2170 Current Requirements and Power Dissipation

Notes: All values at 25°C, 5.0V, 12.0V input.

¹ Example of doing 50 random ops/sec.

² The idle condition is defined by the motor running at the full rated RPM with no seeking or read/write operations being performed. The drive was track following on the OD cylinder for these measurements.

³ This is for a ratio of four reads per one write.

⁴ Differential option available on 68-pin models only.

Operating Mode	Current Population Mean + 4 Sigma		Current Population Mean		Power Pop Mean + 4 Sigma	Power Population Mean
	12 VDC	5 VDC SE/Diff. ⁴	12 VDC	5 VDC SE/Diff. ⁴	SE/Diff. 4	SE/Diff. ⁴
Spin-up	peak DC 1.24A	625/790 mA	peak DC 1.16A	595/725 mA		
Seek 50 ops/s ¹	mean DC 520 mA	625/790 mA	mean C 480 mA	600/735 mA	9.22/9.95 W	8.71/9.38 W
Idle ²	390 mA	610/790 mA	350 mA	585/730 mA	7.60/8.40 W	7.06/7.80 W
Read/Write ³	500 mA	625/790 mA	460 mA	600/735 mA	9.22/9.95 W	8.71/9.38 W

Table 2-8. WDE4360 Current Requirements and Power Dissipation

Notes: All values at 25°C, 5.0V, 12.0V input.

¹ Example of doing 50 random ops/sec.

² The idle condition is defined by the motor running at the full rated RPM with no seeking or read/write operations being performed. The drive was track following on the OD cylinder for these measurements.

 $^{\scriptscriptstyle 3}$ This is for a ratio of four reads per one write.

⁴ Differential option available on 68-pin models only.

2.4.2. 12V Current Profile

The following graphs show the +12V current profile for the WDE2170 and WDE4360 drives during spin-up and run.

Figure 2-5. WDE2170 +12V Current Profile

2.4.3. Input Voltage Requirements

The input voltage requirements for the WDE2170 and WDE4360 are as follows:

 $+5V \pm 5\%$ and $+12V \pm 5\%$

2.4.4. Ripple

Table 2-9	Voltage	Rinnle
1 abie 2-3.	vonaye	Nippie

	+12 VDC	+5 VDC
Maximum	Start: 400 mV (peak-to-peak)	100 mV (peak-to-peak)
	Run: 150 mV (peak-to-peak)	
Frequency	0-20 MHz	0-20 MHz

2.4.5. Bring-Up Sequence

After power is applied, the following events occur as the drive becomes ready for use.

Note: Typical spindle start time appears in Table 2-1.

- 1. The microprocessor tests itself, the on-board memory, and components on the printed circuit board assembly (PCBA).
- The SCSI interface is enabled to accept the following commands: Inquiry, Request Sense, Start/Stop Unit, Test Unit Ready. Refer to the *Western Digital SCSI Implementation Guide* (document number 4096-001116) for additionally supported SCSI commands and features.
- 3. Internal electronic component initialization and testing continues.
- 4. If the Auto Start option is enabled, the motor spins up.
- 5. The servo system calibrates itself.
- 6. Additional configuration information is read from an area on the disk that is reserved for the drive's internal use.
- 7. A self test is performed on the read/write path.
- 8. The drive is ready to read and write data.

If an error occurs during the bring-up sequence, sense data is available if the SCSI interface is working; otherwise the LED, if installed, flashes.

If a reassign was in progress when the drive was turned off, the drive automatically completes that operation during startup.

2.5. Environmental Specifications

2.5.1. Shock and Vibration

All shock and vibration specifications apply to the mounting and orientation conditions described in section 2.3. Orientation axes are defined in Figure 2-4.

Shock	
Operating	10G (2 per second maximum)
Non-operating	70G (3 drops per axis maximum)
Non-operating Rotational Shock	10,000 rad/s ²
Note: Half-sine wave of 3 ms duration	without non-recoverable errors.
Vibration	
Operating	5-20 Hz, 0.037 inch (peak to peak) 20-400 Hz, 0.75G (0 to peak)
Non-operating	5-20 Hz, 0.098 inch (peak to peak) 20-400 Hz, 2.0G (0 to peak)
Sweep Rate	One octave per minute (minimum)

Table 2-10. Shock and Vibration

Operating Shock

WD Enterprise drives are tested by applying a linear shock in each axis, one axis at a time, at a rate not exceeding two shocks per second.

The drive incurs no physical damage and no hard errors while subjected to intermittent shock not exceeding the level listed in Table 2-10. Operating performance may degrade during periods of shock application.

Non-operating Shock

WD Enterprise drives are tested by applying a linear shock in each axis, one axis at a time. A maximum of three shocks per axis is applied.

The drive incurs no physical damage when subjected to non-repetitive shocks not exceeding the level listed in Table 2-10.

Non-operating Rotational Shock

WD Enterprise drives are tested by applying a rotational shock in each direction, about each axis, one axis at a time.

The drive incurs no physical damage when subjected to rotational shocks not exceeding the level listed in Table 2-10.

Operating Vibration

WD Enterprise drives are tested by applying a continuous swept sine excitation in each linear axis, one axis at a time. Sweep rate is one octave per minute.

The drive incurs no physical damage and no hard errors while subjected to continuous vibration not exceeding the level listed in Table 2-10. Operating performance may degrade during periods of vibration application.

Non-operating Vibration

Note: This specification applies to handling and transportation of unmounted drives.

Drives are tested by applying a continuous swept sine excitation in each linear axis, one axis at a time. Sweep rate is one octave per minute.

The drive incurs no physical damage when subjected to continuous vibration not exceeding the level listed in Table 2-10.

Packaged Shock and Vibration

The shipping packaging is designed to meet the National/International Safe Transit Association (N/ISTA) standards for packaged products.

The drive incurs no physical damage when subjected to the N/ISTA standards.

2.5.2. Temperature and Humidity

Table 2-11. Temperature and Humidity

Temperature and Humidity				
Operating ¹				
Temperature	5°C to 55°C (41°F to 131°F)			
Humidity	10-90% RH non-condensing			
	33°C (maximum wet bulb)			
Thermal Gradient	10°C/hour (maximum)			
Non-Operating				
Temperature	-40°C to 60°C (-40°F to 140°F)			
Humidity	5-95% RH non-condensing			
	33°C (maximum wet bulb)			
Thermal Gradient	20°C/hour (maximum)			

¹ The system environment must provide sufficient air flow to limit maximum surface temperatures as defined in Table 2-12.

2.5.3. Cooling

Drive component temperatures must remain within the limits specified in Table 2-12. Figure 2-7 and Figure 2-8 show the temperature measurement locations. Sustained operation at temperatures in excess of the reliability values degrades the MTBF rating. Short excursions up to, but not exceeding, the maximum values do not affect the MTBF rating. Maximum component temperature ratings must not be exceeded under any operating condition. The drive may require forced air cooling to meet specified operating temperatures.

Table 2-12. Maximum & Reliability Operating Temperature Limits

Component	Location	Maximum	Reliability ¹
Drive Baseplate	#1, Figure 2-7.	65°C (149°F)	55°C (131°F)
4915	#2, Figure 2-8.	95°C (203°F)	80°C (176°F)
64C96	#3, Figure 2-8.	80°C (176°F)	65°C (149°F)
2298	#4, Figure 2-8.	80°C (176°F)	65°C (149°F)
1501	#5, Figure 2-8.	85°C (185°F)	70°C (158°F)

Sustained operation at temperatures in excess of the reliability values degrades the MTBF rating.

2.5.4. Atmospheric Pressure

Table 2-13. Allowable Altitude Ranges

Altitude		
Operating	-1,000 feet to 10,000 feet (-300m to 3,000m)	
Non-operating	-1,000 feet to 40,000 feet (-300m to 12,000m)	

2.5.5. Acoustics

Mode	Typical	Maximum	
ldle	4.0 A-weighted Bels	4.3 A-weighted Bels	
Seek	5.0 A-weighted Bels	5.3 A-weighted Bels	

Notes:

1. Sound power is measured in accordance with ECMA-74 and ISO 7779. Seek mode sound power is measured while the drive performs random seeks at a rate of 33 seeks/sec.

2. Drives are tested after a 20 minute warm up period.

Figure 2-7. Drive Baseplate Thermocouple Location

VIEW FROM PCBA SIDE OF DRIVE

Figure 2-8. PCBA Thermocouple Locations

2.6. Reliability Specifications

Recoverable Data Error Rate:	Less than 10 in 10 ¹¹ bits read
Unrecoverable Data Error Rate:	Less than 1 in 10 ¹⁴ bits read
Miscorrected Data Error Rate:	Less than 1 in 10 ²¹ bits read
Seek Error Rate:	Less than 10 in 10 ⁸ seeks (average)
Projected MTBF:	1,000,000 hours
Service Life:	5 years
Preventive Maintenance:	None required

Table 2-15. WDE2170 and WDE4360 Reliability Parameters

Note: The error rates listed above reflect the drive operating under specified conditions.

2.7. Agency Approvals

2.7.1. Product Safety

Western Digital drives are free of Polychlorinated Biphenyl (PCBs) and Cadmium materials. In addition, prohibited Chlorofluorocarbons (CFCs) are not used in the manufacturing process.

Models WDE2170 and WDE4360 meet the safety standards of the following regulatory agencies:

- Underwriters Laboratories: UL-Standard 1950, Standard for Safety of Information Technology Equipment including Electrical Business Equipment (File E101559)
- Canadian Standards Association: CSA-Standard C22.2, No. 950-M89, Standard for Safety of Information Technology Equipment including Electrical Business Equipment (File LR68850)
- **TUV Essen Laboratories:** IEC-950 (EN60950) Standard for Safety of Information Technology Equipment including Electrical Business Equipment

2.7.2. Electromagnetic Compatibility (EMC)

Upon request, Western Digital provides technical information pertaining to compliance testing of the following:

- Federal Communication Commission (FCC): Verified to comply with FCC Rules for Radiated and Conducted Emission, Part 15, Subpart B, for Class B Equipment
- **CE Compliance for Europe:** Verified to comply with EN55022 for RF Emissions and EN50082-1 for Generic Immunity as applicable
- VDE: VDE 0871/6.78, BZT Class B, Radio Frequency Interference of Radio Frequency Equipment for Industrial, Scientific, and Medical (ISM) and similar purposes
- VCCI: VCCI Class 2-CISPR Class B, Radiated and Line Conducted Emissions

3. ADVANCED PRODUCT FEATURES

3.1. Compatibility Testing

Western Digital performs extensive testing in its Functional Integrity Test Lab (FIT LabTM). By equipping the FIT Lab with multiple host systems, adapters, operating systems, and application programs, compatibility is achieved with a broad range of applications implemented on workstations, servers, multi-user, and array systems.

3.2. SCSI-3 SPI Compliant

Drive models WDE2170 and WDE4360 conform to the SCSI-3 SPI (SCSI Parallel Interface) standard. The drives also support the Ultra SCSI performance specification and are offered in several configurations, such as Ultra Fast (8-bit, 50-pin; up to 20MB/s) and Ultra Fast Wide (16-bit, 68-pin, 80-pin SCA-2; up to 40MB/s) host transfer rates.

3.3. Embedded Servo Control

The WD Enterprise drives feature embedded servo technology to generate accurate position information on every track. An embedded servo system has servo bursts interspersed with customer data on every track. This provides a tight coupling between head positioning and customer data – a necessity for good soft error rates. In addition, embedded servo technology is less susceptible to thermal shifts of the system since customer data and position information are recorded together on the same track.

3.4. Read Caching and Pre-Fetch

Read caching allows the drive to maintain data in the cache for quick transfer to the host when a media access is not required. Pre-fetching takes place after a media access when the drive reads data into the cache that the firmware determines as likely to be requested by the host. Refer to the *Western Digital SCSI Implementation Guide* (document number 4096-001116) for further details.

3.5. Write Caching

Write caching gives the host the ability to allow the drive to asynchronously write data to the media while other processes may occur. Refer to the *Western Digital SCSI Implementation Guide* (document number 4096-001116) for further details.

3.6. 512 Kilobyte Data Buffer

The entire data buffer is user accessible, enabling powerful data caching capabilities.

3.7. Adaptive Caching

The drives are equipped with an adaptive caching capability which enables them to improve performance and throughput based on how the drive is being used. Each drive determines the environment in which it is being used and optimizes the way it handles commands and data.

3.8. Command Queuing and Reordering

The drives support both tagged and untagged queuing. Tagged queuing allows the drive to receive multiple I/O processes from each initiator. Untagged queuing allows the drive to receive a maximum of one I/O process from each initiator.

In order to use tagged command queuing, the initiator must set the disconnect privilege bit. This allows the drive to disconnect from the SCSI bus. It also allows the same or other initiators to connect to the drive and send additional commands. The drive returns a status of BUSY if the disconnect privilege bit is off and the drive has I/O processes in the command queue. The drive has the capability to queue up to 64 I/O processes. Upon receipt of the 65th I/O process, the drive returns a status of QUEUE FULL.

The drive can reorder I/O processes in the command queue. The order in which the drive executes I/O processes may differ from the order in which they were received.

Command reordering employs an algorithm which improves the throughput of the drive by attempting to minimize both the seek time and the rotational latency.

The drive uses a command aging feature to prevent the command reordering algorithm from keeping I/O processes waiting in the command queue for extended periods of time. The drive allows I/O processes to wait in the command queue for only a specified length of time before they are scheduled in the next I/O process.

3.9. Media Defect Management

Western Digital drives support a defect management algorithm that uses sector slipping. Defective sites are pushed down during a reassignment operation to maintain a sequential order. Spare sectors are placed throughout the drive to support this algorithm. This routine can be invoked by the drive when Auto-Read Reallocation/Auto-Write Reallocation (ARRE/AWRE) is enabled in MODE SELECT Page 1. If these functions are disabled, the drive reports status and may recommend that the host request a reassign.

3.10. Microcode Download

Western Digital drives support downloadable microcode via the SCSI WRITE BUFFER command. The supported modes include Download Microcode and Save, as well as Download Microcode with Offsets and Save. Download Microcode with Offsets is used when the buffer is limited to the full download and requires smaller partial downloads to complete the download task.

3.11. Reed Solomon ECC On-the-Fly

Error Correction Code (ECC) on-the-fly is a correction technique that reduces the uncorrectable read error rate in hardware. This provides a high degree of data integrity with no impact on the drive's performance.

3.12. CRC Data Protection

Cyclic Redundancy Check (CRC) data protection is a feature that enhances data integrity. During a write operation, before a user data block enters the cache (data buffer), the SCSI controller generates CRC data (2 bytes) and attaches it to the user data block (usually 512 bytes). During a read operation, the SCSI controller reads each user data block and its CRC data in the cache, then verifies the CRC data as it transfers each user data block to the SCSI bus.

3.13. Zoned Recording

The drives employ zoned recording to increase data density on the outer tracks of the drive. Zoned recording allows the adjustment of the number of sectors per track, which provides storage of more sectors on the larger, outer tracks. Formatting packs data uniformly throughout the surface of the platter by dividing the outer tracks into more sectors. With more bytes per track, the drive reads the data in the outer zones at a faster rate.

3.14. Headerless Format

Headerless format is also known as ID-less or No-ID sector format. This format removes the header (or ID fields) and all the information within the header (track format) to provide a dramatic increase in user capacity. Our advanced, integrated SCSI controller assumes the task of determining the physical location of each sector.

3.15. LED Support

If an LED is installed on the drive, the following occurs:

- The LED is turned off as soon as power is applied. If Auto Start is enabled, the LED is on while the drive is spinning up and turned off when Auto Start is completed.
- The LED is on when a SCSI command is being executed.
- The LED flashes when an error prohibits the use of the SCSI interface.

3.16. Option Block Functions

The firmware uses several pins on the option block to modify the drive characteristics. The definitions for the jumpers follow:

- SCSI ID: Four jumpers are used to identify the default SCSI ID for the drive.
- **Disable Auto Start:** Use of this jumper disables Auto Start, meaning the drive does not spin-up until a START UNIT command is issued. Without this jumper, the drive will spin-up and prepare itself at power on without having to receive a START UNIT command.
- Auto Start Delay: Use of this jumper allows the Auto Start to incorporate a delay. The delay time equals the SCSI ID multiplied by 4 seconds.
- Disable Target Initiated Synchronous/Wide Negotiation: Use of this jumper dictates that the drive cannot initiate either synchronous negotiation or wide negotiation. Without this jumper the drive will initiate synchronous and wide negotiation when appropriate.
- Disable Unit Attention: This controls whether a CHECK CONDITION status is reported following a Power On or Reset sequence. A REQUEST SENSE command following one of those conditions still yields the correct sense data for the UNIT ATTENTION condition, as sense data is generated regardless of the jumper setting. A jumper on this pin disables the generation of a CHECK CONDITION for the Power On and Reset UNIT ATTENTION conditions. With no jumper attached, a CHECK CONDITION status is reported in these situations.
- SCSI Configure Automagically (SCAM): The drive is SCAM levels 1 and 2 compliant, which eases user configuration of SCSI IDs and allows for hot plugging on single and multiple drive systems. Use of this jumper allows the drive to function as a SCAM level 2 device. Without the jumper the drive is not a SCAM device.
- Active SCSI Termination: To ensure reliable communication, the SCSI bus must be properly terminated. Use of this jumper enables active termination on the drive. Without this jumper, active termination is disabled.

Note: For more information on the option block, refer to section 5.

3.17. Error Recovery Operations

Error recovery options are set using MODE SELECT Page 1 (Read/Write Error Recovery Page) and the Write Recovery Threshold and Read Recovery Threshold fields in MODE SELECT Page 0 (WD Vendor Unique Page).

The drive employs a variety of recovery actions based on the type of error that occurs. Separate recovery actions are defined for read errors, write errors, servo errors, and drive fault errors. For a given error type, several different recovery actions may be used. For example, read error recovery may use retries, servo track offsets, channel parameter modification, and software ECC in an attempt to recover the error. Error information is available to the host via the REQUEST SENSE command based on the settings in MODE SELECT Pages 0 and 1.

The drive uses a 3-way interleaved Reed-Solomon ECC operating on 8 bit (1 byte) symbols. On-the-fly ECC is capable of correcting single burst errors up to 1 byte per interleave (24 bits total) with no performance degradation. On-the-fly correction is done in hardware and cannot be disabled. The drive firmware also implements a software ECC, which is capable of correcting single or double burst errors up to 2 bytes per interleave.

Refer to the *Western Digital SCSI Implementation Guide* (document number 4096-001116) for more information.

3.18. Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.)

Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) is a hard drive firmware technology that performs drive failure prediction by monitoring selected parameters during normal drive operations. The intent of this technology is to minimize unscheduled system downtime caused by predictable drive failures. By monitoring selected parameters, the S.M.A.R.T. firmware can predict some drive failures before they actually occur, allowing the user to schedule drive replacement and minimize system interruptions.

Refer to the *Western Digital SCSI Implementation Guide* (document number 4096-001116) for more information.

3.19. Hot Plug/Unplug Support

The conditions for hot-plugging drives into an active SCSI bus follow:

- The drive signal ground <u>must</u> be made before the SCSI bus signals.
- Power—both +5V and +12V—cannot be applied until the SCSI bus signals are connected.
- The host(s) are not actively trying to access the inserted device.
- The drive is not supplying TERMPWR to the SCSI bus.
- The drive is not supplying termination to the SCSI bus.

The conditions for the removal of a device from an active SCSI bus follow:

- The host(s) are not actively trying to access the device to be removed.
- The drive is not supplying TERMPWR to the SCSI bus.
- The drive is not supplying termination to the SCSI bus.
- Power, both +5V and +12V must be removed before the SCSI bus signals are disconnected.
- The drive signal ground <u>must</u> be broken after the SCSI bus signals.

The SCA-2 (80-pin) connector allows for proper insertion and extraction by providing an appropriate mechanical mating that makes the signal ground connection first upon insertion and last upon extraction. There are also control signals that allow the proper application of power to adhere to the insertion and extraction rules above. However, the user must guarantee that the three rules listed below apply:

- The host(s) are not actively trying to access the inserted device.
- The drive is not supplying TERMPWR to the SCSI bus.
- The drive is not supplying termination to the SCSI bus.

4. SCSI INTERFACE AND COMMAND SET

Refer to the Western Digital SCSI Implementation Guide (document number 4096-001116).

5. THE OPTION BLOCK

The WD Enterprise drive PCBA contains an option block that controls the drive's operation. This block is equipped with jumper pins that correspond to various options controlled by SCSI commands. Jumpers are used to enable or disable the options and modify the drive configuration. The user-configurable jumpers appear in Table 5-1.

Note: Jumpers should only be changed when the drive is powered down.

5.1. Physical Characteristics

The block consists of a 2-pin by 17-pin male header. Pin-to-pin spacing is 2 mm by 2 mm.

5.2. Pin Designation

The pin layout appears below. The diagram represents the view as seen by the customer.

Figure 5-1. Option Block and LED Pin Designation

5.3. Option Block Pin Assignments

The option block is used to modify the drive characteristics. The table below shows the pin numbers that correspond to each option or signal, and provides instruction for enabling and disabling these features. Refer to the *WD Enterprise Installation Guide* (document number 4079-001046) for option definitions.

OPTION/SIGNAL	PINS	CONFIGURATION NOTES	
SCSI IDs	1 - 8	Set according to Table 5-2.	
(KEY)/LED-	X - 10	X - no pin/10 - LED cathode connection	
RESERVED	11 - 12	11 - Ground/12 - Reserved	
OPT 1: DISABLE AUTO START	13 - 14	Install jumper to disable auto start.	
OPT 2: AUTO START DELAY	15 - 16	Install jumper to enable auto start delay.	
OPT 3: SCAM	17 - 18	Install jumper to enable SCAM.	
OPT 4: DISABLE UNIT ATTENTION	19 - 20	Install jumper to disable unit attention.	
OPT 5: DISABLE TARGET INITIATED SYNCHRONOUS/WIDE NEGOTIATION	21 - 22	Install jumper to disable target initiated synchronous/wide negotiation.	
OPT 6: SCSI TERMINATION	23 - 24	Install jumper to enable SCSI termination.	
TXD/RXD	25 - 26	Reserved	
TPWR/+5V	27 - 28	Install jumper to enable TERMPWR on the SCSI bus.	
LED+/+5V	29 - 30	29 - LED anode connection/30 - Reserved	
+12R/+12R	31 - 32	Reserved	
+12V/+12V	33 - 34	Reserved	

Table 5-1. Option Block Pin Assignments

Note: Pins 1,3,5,7,11,13,15,17,19,21, and 23 are ground.

5.4. SCSI ID Jumper Table

	JUMPER LOCATION			
SCSI ID	Pins 7 & 8	Pins 5 & 6	Pins 3 & 4	Pins 1 & 2
0	0	0	0	0
1	0	0	0	•
2	0	0	•	0
3	0	0	•	•
4	0	٠	0	0
5	0	•	0	•
6	0	٠	•	0
7	0	٠	•	•
8	•	0	0	0
9	•	0	0	•
10	•	0	•	0
11	•	0	•	•
12	•	•	0	0
13	•	•	0	•
14	•	•	•	0
15	•	•	•	•
jumper installed O jumper removed legal 8-bit bus IDs* " If any device on your computer's SCSI bus supports only 8-bit SCSI IDs, the WD Enterprise drive must be set to one of these values. When setting IDs on 50-bit drives prior 2 and 8 are not used				

Table 5-2. SCSI ID Jumper Table

6. SCSI CONNECTORS

6.1. Power Connectors and Cables

Table 6-1. 50-pin Drive Power Connector and Cable

POWER CONNECTOR	MATING CONNECTOR	WIRE GAUGE		
AMP 2-in-1	1x4 PC power connector	18 AWG		

Table 6-2. 68-pin Drive Power Connector and Cable

POWER CONNECTOR	MATING CONNECTOR	WIRE GAUGE		
Molex 3-in-1 combo (or equivalent)	1x4 PC power connector	18 AWG		

6.2. SCSI Physical Interface

All Western Digital SCSI hard drives are designed to conform to the SCSI-3 Parallel Interface as described in the draft of proposed ANSI specification X3T10/855D Revision 15a. In addition, drives equipped with the 80-pin SCA connector are designed to conform to the Small Form Factor Committee draft specification SFF-8046 Rev 2.0 entitled "SCA-2 (Single Connector Attach) for SCSI Disk Drives". Since tutorials on SCSI-3 and SCA are beyond the scope of this manual, users should review their SCSI implementations as required to ensure compliance. The SCSI-3 spec has several informative annex sections on cabling, bus termination, crosstalk, etc., that are quite helpful to SCSI system architects and implementors.

6.3. 50-Pin SCSI Connector

Figure 6-1. 50-Pin SCSI Connector and Power Connector Pin Numbers

SINGLE-ENDED SCSI CONNECTOR									
Pin									
Signal Name	Nur	nber	Signal Name						
GROUND	1	2	-DB0						
GROUND	3	4	-DB1						
GROUND	5	6	-DB2						
GROUND	7	8	-DB3						
GROUND	9	10	-DB4						
GROUND	11	12	-DB5						
GROUND	13	14	-DB6						
GROUND	15	16	-DB7						
GROUND	17	18	-DBP						
GROUND	19	20	GROUND						
GROUND	21	22	GROUND						
open	23	24	open						
open	25	26	TERMPWR						
open	27	28	open						
GROUND	29	30	GROUND						
GROUND	31	32	-ATN						
GROUND	33	34	GROUND						
GROUND	35	36	-BSY						
GROUND	37	38	-ACK						
GROUND	39	40	-RST						
GROUND	41	42	-MSG						
GROUND	43	44	-SEL						
GROUND	45	46	-C/D						
GROUND	47	48	-REQ						
GROUND	49	50	-I/O						

Table 6-3. 50-Pin SCSI Connector Pin Assignments

Signal Name	Pin Number		Signal Name
+12V (+12 SUPPLY)	51	52	GROUND (+12 RETURN)
GROUND (+5 RETURN)	53	54	+5V (+5 SUPPLY)

6.4. 68-Pin SCSI Connector

Figure 6-2. 68-Pin SCSI Connector, Remote Option Connector, and Power Connector Pin Numbers

SINGLE-ENDED SCSI CONNECTOR							
	F	Pin					
Signal Name	Nu	nber	Signal Name				
GROUND	1	35	-DB12				
GROUND	2	36	-DB13				
GROUND	3	37	-DB14				
GROUND	4	38	-DB15				
GROUND	5	39	-DBP1				
GROUND	6	40	-DB0				
GROUND	7	41	-DB1				
GROUND	8	42	-DB2				
GROUND	9	43	-DB3				
GROUND	10	44	-DB4				
GROUND	11	45	-DB5				
GROUND	12	46	-DB6				
GROUND	13	47	-DB7				
GROUND	14	48	-DBP0				
GROUND	15	49	GROUND				
GROUND	16	50	GROUND				
TERMPWR	17	51	TERMPWR				
TERMPWR	18	52	TERMPWR				
open	19	53	open				
GROUND	20	54	GROUND				
GROUND	21	55	-ATN				
GROUND	22	56	GROUND				
GROUND	23	57	-BSY				
GROUND	24	58	-ACK				
GROUND	25	59	-RST				
GROUND	26	60	-MSG				
GROUND	27	61	-SEL				
GROUND	28	62	-C/D				
GROUND	29	63	-REQ				
GROUND	30	64	-I/O				
GROUND	31	65	-DB8				
GROUND	32	66	-DB9				
GROUND	33	67	-DB10				
GROUND	34	68	-DB11				

Table 6-5. 68-pin SCSI Connector Pin Assignments

DIFFERENTIAL SCSI CONNECTOR								
(OPTIONAL)								
Signal Name	H Nur	'ın nber	Signal Name					
+DB12	1	35	-DB12					
+DB13	2	36	-DB13					
+DB14	3	37	-DB14					
+DB15	4	38	-DB15					
+DBP1	5	39	-DBP1					
GROUND	6	40	GROUND					
+DB0	7	41	-DB0					
+DB1	8	42	-DB1					
+DB2	9	43	-DB2					
+DB3	10	44	-DB3					
+DB4	11	45	-DB4					
+DB5	12	46	-DB5					
+DB6	13	47	-DB6					
+DB7	14	48	-DB7					
+DBP0	15	49	-DBP0					
DIFFSENS	16	50	GROUND					
TERMPWR	17	51	TERMPWR					
TERMPWR	18	52	TERMPWR					
open	19	53	open					
+ATN	20	54	-ATN					
GROUND	21	55	GROUND					
+BSY	22	56	-BSY					
+ACK	23	57	-ACK					
+RST	24	58	-RST					
+MSG	25	59	-MSG					
+SEL	26	60	-SEL					
+C/D	27	61	-C/D					
+REQ	28	62	-REQ					
+I/O	29	63	-I/O					
GROUND	30	64	GROUND					
+DB8	31	65	-DB8					
+DB9	32	66	-DB9					
+DB10	33	67	-DB10					
+DB11	34	68	-DB11					

Signal Name	SFF-8009 Signal Name	SFF-8009 Pin Number	Pin Number		SFF-8009 Pin Number	SFF-8009 Signal Name	Signal Name
SCSI ID 0	SEL0-	1	69	70	2	XTFALT-	GROUND
SCSI ID 1	SEL1-	3	71	72	4	VUNIQ-	GROUND
SCSI ID 2	SEL3-	5	73	74	6	reserved	RESERVED
SCSI ID 3	SEL3-	7	75	76	8	XTACTV-	LED-
TERMEN-	ENTERM-	9	77	78	10	GROUND	GROUND
+5V	+5V	11	79	80	12	FAULT-	NO CONNECTION

Table 6-6.	Remote O	ption for 6	8-Pin	Connector	(single-ende	d and	differential	versions)
			-		1 0			/

Table 6-7. DC Power Connector (single-ended and differential versions)

Signal Name	Pin N	umber	Signal Name
+12V (+12 SUPPLY)	81 82		GROUND (+12 RETURN)
GROUND (+5 RETURN)	83	84	+5V (+5 SUPPLY)

6.5. 80-Pin (SCA-2) SCSI Connector

SINGLE-ENDED SCSI CONNECTOR								
Signal Namo	P	in abor	Signal Namo					
	1	41	+12V GND					
+12VOLTS	2	42	+12V GND					
+12VOLTS	3	43	+12V GND					
+12VOLTS	4	40						
reserved	5	45	reserved					
reserved	6	46	GROUND					
-DB11	7	40	GROUND					
-DB10	, 8	48	GROUND					
-DB9	q	40	GROUND					
-DB8	10	50	GROUND					
-000	11	51	GROUND					
-1/0 -REO	12	52	GROUND					
	12	52	GROUND					
-0/0	14	54	GROUND					
	14	55	GROUND					
-1013G	16	55	GROUND					
	17	50	GROUND					
-ACK	10	57	GROUND					
	10	50	GROUND					
	20	59	GROUND					
	20	61	GROUND					
	21	62	GROUND					
-DB0	22	62	GROUND					
-DB3	23	64	GROUND					
-DB4	24	65	GROUND					
-DB3	20	66	GROUND					
-DB2	20	67	GROUND					
	21	69	GROUND					
	20	60	GROUND					
	29	70	GROUND					
-DB13	30	70	GROUND					
-DB14	22	71	GROUND					
-DB13	32	72	GROUND					
	33	73	GROUND					
	34	75						
	30	70						
+SVULIS	30	70						
	31	70						
AUTUSTART	38	70 70						
	39	19						
SUSFID 2	40	80	SCSLID 3					

Table 6-8. 80-Pin (SCA-2) SCSI Connector Pin Assignments

7. INSTALLATION AND MAINTENANCE

For instructions on installing the drive, including drive handling and mounting, determining the configuration, setting the drive jumpers, and cabling procedures, refer to the *WD Enterprise Installation Guide* (document number 4079-001046).

7.1. Electrostatic Discharge (ESD) Protection

To prevent drive damage, it is essential to keep the drive in an ESD safe environment. You can take several precautions to avoid permanent damage to the drive.

- Keep the drive in the shielded anti-static bag prior to testing or installation.
- Gently place the drive on a padded, grounded anti-static surface when it is not in its shipping container.
- Wear a grounded wrist strap throughout all phases of drive handling.
- Do not allow clothing to come in direct contact with the drive or PCBA.
- Do not insert any other items in the shielded anti-static bag with the drive.

7.2. Maintaining the Drive

To keep the drive in optimal working order and prolong the life of the unit, do the following:

- Do not attempt to open the sealed compartment of the WDE2170/WDE4360 drive; this will void the warranty.
- Avoid harsh shocks or vibrations.
- Observe the environmental limits specified for this product.
- To protect your data, back it up regularly. Western Digital assumes no responsibility for loss of data. For information about back-up and restore procedures, consult your operating system manual. There are a number of utility programs available to back up your data.

Caution: Do not remove any product identification labels.

The drive requires no preventive maintenance and contains no user-serviceable parts. Service and repair of the drive must be performed at a Western Digital Service Center. Contact your Western Digital representative for warranty information and service/return procedures.

8. **TECHNICAL SUPPORT**

If you have a problem with your WD Enterprise drive, the following tips may help determine the cause of the problem.

- Verify that you have correctly followed the setup procedures for your system.
- Check the physical installation:
 - Jumper selections on the WDE2170 and WDE4360
 - Correct cabling
 - Controller card, properly seated and configured
 - System power supply
- Observe the environmental limits specified for this product.

For literature and additional tips:

- DocuFAX automated FAX system: (714) 932-4300
- Internet WWW site: http://www.wdc.com/
- America Online keyword: Western Digital or WDC
- Microsoft Network keyword: WDC

If the problem persists:

- Call toll-free in the U.S.: 1-888-WDC-SCSI (or 1-888-932-7274)
- Call (507) 286-7972
- FAX (507) 286-7926

9. GLOSSARY

Active Termination - Works to control the impedance at the end of the SCSI bus by using a voltage regulator. This reduces the susceptibility of the bus to noise, particularly when cables are long or when many devices are connected to the bus. Because it is active, regulating the power that it gets from the interface card, active termination is more stable than passive termination.

Adaptive Caching - The drive determines the environment in which it's being used and optimizes the way it handles commands and data.

Auto Park - Turning off the drive's power causes the WDE2170/WDE4360 drive to move the read/write heads to a safe non-data landing zone and locks them in place.

Average Read Seek Time - Equal to the total time of a test divided by 50,000 random length and random head seeks.

Block - Group of bytes handled, stored, and accessed as a logical data unit, such as an individual file record.

Buffer - Temporary data storage area that compensates for a difference in data transfer rates and/or data processing rates between sender and receiver.

Command Queuing - Feature that enables the drive to receive I/O processes from one or more initiators.

Command Reordering - Feature that allows the drive to reorder I/O processes in the command queue, thereby minimizing the seek time and rotational latency.

Correctable Error - Error that can be corrected by the use of Error Detection and Correction algorithms.

Customer Configuration Code (CCC) - Located on the product label attached to the drive. This code is revised only when changes affect the drive's form, fit, or function.

Data Transfer Rate - Speed at which data transfers to and from the disk media (actual disk platter); a function of the recording frequency. Typical units are bits per second (bps) or bytes per second. Modern hard drives have an increasing range of disk transfer rates from the inner diameter to the outer diameter of the disk. This is called a "zoned" recording technique.

Defect Management - General methodology of eliminating data errors on a recording surface by mapping out known defects on the media.

Differential SCSI - Each signal consists of two lines called "–Signal" and "+Signal". Commands and data are carried over two sets of wires, and the difference is taken between each set of signals. Two-wire signaling is a proven way to achieve reliable signal transmission in noisy environments and over long distances.

ECC On-the-Fly - Hardware correction technique that corrects errors in the read buffer prior to host transfer without any performance penalties. These error corrections are invisible to the host system because they do not require assistance from the drive's firmware.

Embedded Servo Control - Design that generates accurate feedback information to the head position servo system without requiring a full data surface (which is required with a "dedicated" servo control design).

Error Correction Code - Mathematical algorithm that can detect and correct errors in a data field by adding check bits to the original data.

Error Rate - Number of errors of a given type that occur when reading a specified number of bits.

Formatted Capacity - Actual capacity available to store data in a mass storage device. The formatted capacity is the gross capacity minus the capacity taken up by the overhead data required for formatting the media.

Functional Integrity Testing (FIT) - Suite of tests Western Digital performs on all its drive products to ensure compatibility with different hosts, operating systems, adapters, application programs, and peripherals. This testing must be performed before the product can be released to manufacturing.

Hard Error - Error that cannot be corrected by the error recovery process.

Host Transfer Rate - Speed at which the host computer can transfer data across the SCSI interface.

Landing Zone - Non-data position on the disk's inner cylinder where the heads land when power is turned off.

Latency - Average time delay between the head arriving on track and the data rotating to the head. (Calculated as one-half the revolution period).

Logical Address - Storage location address that may or may not relate directly to a physical location. The logical address is used when requesting information from a controller. The controller performs a logical-to-physical address conversion and retrieves the data from a physical location in the storage device.

MB (Megabyte) - Western Digital defines a megabyte as 1,000,000 bytes.

MTBF (Mean Time Between Failures) - Mean number of life units (in 10⁶ hours), during which all parts of the drive perform within their specified limits, during a particular measurement interval under stated conditions.

Recoverable Error - Read error, transient or otherwise, that can be corrected by ECC recovery or by re-reading the data.

RPM (Revolutions per Minute) - Rotational speed of the media (disk), also known as the spindle speed. Hard drives spin at one constant speed. Disk RPM is a critical component of hard drive performance because it directly impacts the rotational latency of the disk transfer rate.

SCA-2 - The Single Connector Attach (SCA-2) interface incorporates a grounding contact, blindmate connector, direct plug misalignment tolerance, ESD protection, hot swap capability, and backplane connector options. SCA is commonly called the 80-pin connector.

SCSI Configure Automagically (SCAM) - Allows users to attach SCSI devices without worrying about configuration options.

SCSI-1 - The Small Computer System Interface (ANSI document X3.131-1986).

SCSI-2 - The Small Computer System Interface (ANSI document X3.131-1994).

SCSI-3 - The ANSI X3T10 Working Documents (under development).

SCSI device - Host computer adapter, peripheral controller, or an intelligent peripheral that can be attached to the SCSI bus.

Sector - A packet of data (usually 512 bytes long).

Seek Time - A measure (in milliseconds) of how fast the hard drive can move its read/write heads to a desired location.

Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.) - Monitors a drive's internal status.

Servo Burst - Provides positioning information to the actuator arm, usually positioned between sectors or at the end of a track.

Single-ended SCSI - Standard electrical interface for SCSI. Single-ended means an interface with one signal line and one corresponding ground line for each SCSI signal.

Soft Error - Data error that can be corrected by the error recovery process.

Ultra SCSI - Provides 20 MB/s over an 8-bit bus or 40 MB/s over a 16-bit Wide SCSI bus. Known also as Fast-20 SCSI, this feature is most commonly found in SCSI-3 devices.

Unrecoverable Error - Read error that cannot be corrected by an ECC scheme or by re-reading the data when host retries are enabled.

Zoned Recording - Increases the data density on the outer tracks of the drive where most of the sectors are located. This type of recording affords more disk capacity because there can be more sectors on the larger outer tracks than would be possible if the number of sectors per track were constant for the whole drive.

10. APPENDIX A. — UNDERSTANDING THE MODEL NUMBER

Capacity in MB

Platform (E = WD Enterprise)

The diagram illustrates the model number convention for WD Enterprise drives.

The table illustrates the interface matrix portion of the model number.

INTERFACE MATRIX											
Matrix Code	Inte	rface	(Connecto	r	Bu	ffer	Termination Installed		Term Pwr Installed	
	SE	Diff	50-pin	68-pin	80-pin	512K	1 MB	Yes	No	Yes	No
01	Х		Х			Х			Х	Х	
03	Х		Х			Х		Х		Х	
05	Х			Х		Х			Х	Х	
07	Х			Х		Х		Х		Х	
08	Х				Х	Х			Х		Х
12	Х		Х				Х	Х		Х	
16	Х			Х			Х	Х		Х	
17	Х				Х		Х		Х		Х
23		Х		Х		Х			Х	Х	
32		Х		Х			Х		Х	Х	

11. INDEX

—A—

Acoustics, 17 Actuator Type, 5 Adaptive Caching, 21 Agency Approvals, 20 AOL, 39 Atmospheric Pressure, 17 Auto Park, 40

—B—

Block, 40 Bring Up Sequence, 13 Buffer, 40 Buffer Size, 4 Bytes Per Sector, 5

—C—

Command Queuing, 22 Command Reordering, 22 Connectors Physical Characteristics, 28 Cooling, 16 Correctable Error, 40 CRC Data Protection, 22 CSS, 4 Customer Configuration Code (CCC), 40

—D—

Data Buffer, 512 KB, 21 Data Surfaces, 5 Data Transfer Rate, 4, 40 Defect Management, 40 Dimensions, 6

—Е—

ECC, 5, 40 Electromagnetic Compatibility, 20 Embedded Servo Control, 40 Error Correction Code, 40 Error Rate, 4, 40 Error Recovery Operations, 25

—F—

FCC, 20 FIT (Functional Integrity Testing), 41 Formatted Capacity, 5, 41 Full Stroke Seek, 4

—G—

Glossary, 40

—H—

Hard Error, 41 Headerless Format, 23 Host Transfer Rate, 41 Hot Plug/Unplug Support, 26 Humidity, 16

—I—

Installation, 38 Interface, 5 Internet, 39

—L—

Landing Zone, 41 Latency, 4, 41 LED Support, 23 Logical Address, 41

—M—

Maintenance, 38 Media Defect Management, 22 Megabyte, 41 Microcode Download, 22 Mounting, 10 MTBF, 41

-0-

On-the-Fly, 22 Option Block, 28 Option Block Functions, 24 Option Block Pin Assignments, 29 Options, 3 Ordering Literature, 39

—P—

Performance, 2, 4 Pin Designation, 28 Pre-Fetch, 21 Product Features, 2 Product Features, Advanced, 21 Product Safety, 20

—R—

Read Caching, 21 Recording Method, 5 Recoverable Error, 41 Reed Solomon ECC, 22 Ripple, 13 Rotational Speed, 4 RPM, 4, 41

—S—

S.M.A.R.T., 25, 41 Safety, 20 SCA-1, 41 SCSI Connector, 31 50-Pin, 32 68-Pin, 34 SCSI Connectors, 31 SCSI device, 41 SCSI Drive Connector Pin Numbers 50-Pin, 33 68-Pin, 35 SCSI ID Jumper Table, 30 SCSI Physical Interface, 31 SCSI-1, 41 SCSI-2, 41 SCSI-3, 41 Sector, 41 Seek Time, 4, 41 Servo Burst, 42 Servo Type, 5 Shock, 14

Soft Error, 42 Specifications, 4 Electrical, 11 Environmental, 14 Mechanical, 7 Performance, 4 Physical, 5 Reliability, 20

—T—

Technical Support, 39 Telephone Support, 39 Temperature, 16

—U—

Ultra SCSI, 42 Unrecoverable Error, 42 User Sectors Per Drive, 5

V

Vibration, 14 Voltage Requirements, Input, 13

—W—

Write Caching, 21

—Z—

Zoned Recording, 23, 42

H0300 4/97